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Abstract: The contribution at hand presents a novel approach 

to generate dynamic energy-optimized illumination by matrix 

headlamps designed for automated driving. The approach 

consists of a novel basic minimal illumination adapted to the 

current road environment with minimum brightness and a light 

pixel control strategy to adjust the illumination of potential 

objects uniformly and selectively only. The approach was 

developed and optimized by considering the impact of other 

lighting functions such as Glare-Free High Beam and marker 

light on the quality of object detection and possible alternatives 

such as symbol projection with structured light. The concept 

achieves a similar quality of object detection as conventional 

high beam, but requires only around 16% of the energy. This 

shows the energy saving potential of automated vehicles in 

combination with novel headlight control strategies. 

 
 Keywords: matrix headlight, automated driving, energy 

optimization, lighting functions 

I. INTRODUCTION 

Reducing the total electrical energy consumption and CO2  
production of automotive matrix headlights and the 

optimization of their dynamic lighting functions [1] are 

important aspects of product development to increase the 

range of electric vehicles and create sustainable products with 

positive reputation [2]. One simple and economical way to 

lower headlamp energy consumption during operation is to 

reduce the emitted luminous flux of all individual headlamp 

light sources, but this also decreases the contrast and visibility 

of dangerous traffic objects. High-Definition (HD) matrix 

headlights, which are often called pixel or digital headlights, 

consist of many individual light modules, each of which can 

have up to 1.3 million individually controllable light sources 

called pixels [3], which are arranged in a matrix format and 

illuminate different areas in front of the ego vehicle. By using 

a matrix headlight, the illumination in front of the ego vehicle 

is therefore area-selectively adjustable in brightness, enabling 

lighting functions such as Glare-Free High Beam (GFHB) 

[4,5] and the projection of symbols like a crosswalk for visual 

communication. The GFHB lighting function allows the high 

beam to be kept active while other road users are in front of 

the ego vehicle without dazzling them by selectively turning 

off those pixels whose illumination would dazzle other road 

users and keeping the rest of the high beam illumination 

active. The GFHB is shown in fig. 1 as the dark tunnel in the 

simulated fog around the vehicle in the distance. The red ego 

vehicle in fig.1 is equipped with a pair of HD matrix 

headlights which each have over 100k individual light 

sources, so it is possible to project symbols [6] on the road 

additionally to the ordinary GFHB. Here, the pedestrian is 

marked with a projected line to warn the human driver and 

guide its attention and a possible evasive maneuver to avoid 

a collision with the vehicle without lights on the driving lane 

is projected as a polygon curve. 

 Currently used high beam illumination is generally 

optimized for the best environment perception of the human 

driver and not for automated vehicles, especially their 

cameras and information processing with machine learning. 

Since high beam illumination is intended to improve visibility 

of traffic objects, it should also be suitable for object 

detection with cameras, but the question is whether currently 

used GFHB is the most energy-efficient illumination for an 

automated vehicle or whether there are better options with the 

same quality of object detection. Unlike a human driver, an 

automated vehicle is able to quickly communicate its 

confidence about a potential traffic object to the headlight 
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Fig. 1: Simulation of HD lighting functions such as GFHB, projecting the 

planned path of the automated vehicle onto the road and marking 

dangerous traffic objects with projected lines to direct the human driver’s 

attention [6]. 
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control system, which could selectively and rapidly adjust the 

HD illumination to improve detection. This control loop is 

not possible with a human driver because there is currently 

no human-machine interface for pixel control in vehicles. As 

automated driving continues to evolve, it is conceivable to 

develop such a control loop between matrix headlights and 

the environment perception algorithms that offers the 

potential to illuminate the environment more efficiently, 

primarily by using less electrical energy for the same quality 

and by being more targeted to objects of interest. 

Considering a possible novel control loop, this contribution 

presents a novel approach for optimal illumination, which 

consists of a novel Adaptive Frontlighting System (AFS) 

basic static illumination and a corresponding control strategy 

for maximizing the quality of visual camera-based object 

detection by deep learning in an energy-efficient manner. In 

contrast to the state-of-the-art and other work, the 

illuminations in this paper are designed to provide optimal 

support for highly automated driving, not for human drivers 

and other human road users. The presented strategy uses a 

minimum brightness baseline illumination, which is only 

bright enough to detect anything at all, and an adaptation 

strategy of pixels emitting in the direction of the detected 

object to improve its detection. Therefore, the novel 

illumination may be perceived as too dark for humans, but the 

automated vehicle can still just barely detect all objects. 

Object detection involves finding the correct position, 

rotation, and size of the bounding box around the object and 

the class of the object. Detection of objects such as vehicles 

at night with machine learning is not a new research topic [7], 

[8] and the contribution at hand focuses on energy efficient 

enhancement of environment perception with existing state-

of-the-art machine learning approaches such as YOLOv5 [9]. 

Optimal illumination using matrix headlights for object 

detection is also evaluated by [10], which evaluates the 

minimum illumination required to localize objects with a 

Intersection over Union (IoU) [11], also called Jaccard index, 

of 50% on validation data. This previous work uses single 

static light distributions and does not consider dynamic 

features such as GFHB and marker light. Also, this previous 

work seams to adjust the complete light distribution in front 

of the ego vehicle and is not using the novel approach of this 

contribution of using a minimal base illumination and 

adjusting only the illumination in the area of the objects. 

Adjusting the complete beam pattern has as the disadvantage 

a higher energy consumption and an increased subjective 

level of distraction of road users due to a larger area of 

changing lighting. In contrast to the published work, this 

contribution not only discusses the minimum illumination 

required for reliable object detection, but also presents and 

compares strategies to use HD matrix headlights to improve 

detection quality, e.g., the IoU of detected objects, while 

considering dynamic illumination features that may interfere 

with object detection. 

For object detection, section II briefly discusses the 

creation of a minimum base illumination, which should be 

generated dynamically considering the current environment. 

Then, it is assumed that all objects are detected in any way. 

In section III strategies to efficiently improve detection of 

vehicles and pedestrians under uniform illumination by the 

matrix headlamps are presented and in section IV the 

projection of symbols such as structured light with line 

patterns and randomized patterns are evaluated and compared 

to improve object detection. The summary and outlook in 

section V concludes the contribution at hand. 

II. CREATING THE MINIMAL BASE ILLUMINATION 

An optimal illumination should maximize visibility and 

assessability of the traffic situation with minimal energy 

expenditure and without disturbing any road user including 

animals and artificial intelligences. Since further AFS basic 

illuminations for automated vehicles are not yet standardized, 

this section is highly subjective and represents the opinion of 

the authors. According to [12] and in the authors opinion’ 

further HD illumination should be dynamically adjusted to 

environmental segments such as the roadway, shoulder, bike 

lanes, and buildings to optimally illuminate the various 

environmental objects, e.g., increased illumination around 

parking cars to better detect children running onto the road. 

Therefore, it is proposed to use minimal illumination as a 

baseline and selectively increase and adjust the illumination 

based on the environment class, e.g., additional light on the 

bike lane or reduced light on highly reflective buildings to 

generally provide optimal illumination.  

A test scenario is used to develop and evaluate the baseline 

illumination and illumination control strategy. The test 

scenario is similar to [10] and has a two-lane, straight road 

with a lane width of 3.5 m, which is shown in fig. 2 from an 

orthographic perspective from top to bottom. This scenario 

has 16 test positions 𝒑𝑥,𝑦 =  [𝑥 𝑦 0]T with longitudinal 

position 𝑥 and lateral position 𝑦. The origin of the right-

handed coordinate system is between the headlights of the 

ego vehicle. The test positions 𝒑𝑥,𝑦 are located at longitudinal 

distances of 25 m, 50 m, 75 m, and 100 m, as well as laterally 

in the middle of the lanes and directly at the edges of the 

lanes. The positions 𝒑𝑥,𝑦 were chosen to represent 

subjectively interesting test cases because objects at 25 m 

could require immediate driver intervention, objects at 50 m 

are at the edge of the range of an average low beam, objects 

at 75 m should not be visible with a typical low beam, and 

objects at 100 m are at the edge of the range of an average 

high beam. The range of a headlight depends on the lighting 

technology used, so the values given are subjective and 

depend on personal experience.  

The test objects are a vehicle with red metallic paint and a 

length of 5.1 m, a width of 2 m and a height of 1.6 m and a 

dark light blue stylized male person with a height of 1.8 m 

and a width of 0.8 m. During the research for this 

contribution, the size, material, and color of the objects were 

 
Fig. 2: Orthographic top-down visualization of the test scenario setup of a 

straight two-lane country road and additional environment objects with 16 

test positions 𝒑𝑥,𝑦 similar to [10]. 
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slightly changed, resulting in similar but not identical results. 

The exact influence of the object parameters will be 

investigated in a further contribution.  

For real time lighting simulation, the Unreal Engine (UE) 

4 was chosen and trees, marker posts and houses are placed 

near the road to create a realistic virtual country road scene. 

No scheme was followed in the manual placement of objects, 

nor was a real street recreated. The Physically Based 

Rendering (PBR) material-parameters were chosen 

empirically to create a realistic-looking environment with the 

Twinmotion material collection as a starting point. 

Fig. 3a shows conventional high beam illumination and in 

contrast fig. 3b shows a novel optimized illumination for 

automated vehicles with minimum brightness. In the far field, 

the illumination is empirically reduced to the minimum light 

intensity required for detecting vehicles at all positions 𝒑𝑥,0 

and 𝒑𝑥,3.5 for increasing distance in 𝑥-direction with 𝑥 = 25, 

50, 75, 100 (as shown in fig. 2) and people at position 𝒑𝑥,−2.5 

and position 𝒑𝑥,3.5. The automated vehicle is assumed to travel 

in its straight lane, so it is not necessary to detect for example 

objects at position 𝒑𝑥,6 and it is sufficient to detect them when 

they are at position 𝒑𝑥,3.5 to avoid dangerous situations. If the 

further path of the ego vehicle is changed, the base 

illumination must be adjusted to ensure the detection of 

safety-critical objects. 

The energy-optimized illumination in fig. 3b consists of a 

basic illumination directly in front of the ego vehicle, which 

mainly ensures that the vehicle is seen by others rather than 

enhancing its own perception, and a high beam reduced to 8% 

of its default usage. In addition, all pixels that illuminate areas 

above a threshold height value outside the lane are disabled 

by default to save energy. The illumination height increases 

with distance, so that a person 100 m away is fully illuminated 

and only the legs of a person 50 m away are illuminated and 

thus visible. To detect distant persons, a larger area of the 

body must be illuminated, because the person covers a 

smaller number of pixels in the camera image. With this 

illumination, people can be detected at all positions 𝒑𝑥,−2.5 and 

𝒑𝑥,3.5 with YOLOv5 [9], ensuring object detection. Dimming 

of high areas next to the road could prevent automatic 

detection of traffic signs, but if the vehicle’s environment 

perception is able to detect the sign’s pole or use map 

information about upcoming signs, then the headlight control 

algorithm could dynamically increase illumination in the 

expected area of the sign to ensure its readability. However, 

since traffic signs reflect light, they become unreadable if 

they are too brightly lit and dazzle the driver himself, so too 

much illumination is safety critical. 

In order to improve the detection of objects and eliminate 

false detections caused by low illumination, the general 

strategy in this contribution is to increase the illumination of 

objects and their surroundings, but taking into account the 

behavior of traffic signs, there may be too strong 

illuminations that disturb the driver himself, e.g., by highly 

reflective surfaces. That is why, the next sections will show 

experiments to find efficient illumination levels, which 

improve the detection and not disturb the system with false 

classifications. 

III. SELECTIVE 3D ILLUMINATION OF OBJECTS 

For the development and evaluation of energy-efficient 

illumination, the scenario in fig. 2, is used. The scenario is 

simulated using Unreal Engine (UE) 4 with the default 

automatic histogram-based exposure calculation of the virtual 

camera with an exposure compensation of -1. The UE 

exposure calculation is designed to simulate human eye 

adaptation to changing environment brightness levels and is 

used to recreate an automatic camera parameter adaption. The 

virtual camera has an aperture angle of 60° and captures a 

1920 × 1200 pixel image. The tests are only conducted in a 

virtual world, but [13] has shown that a properly adjusted 

Unreal Engine 4 provides similar and valid results in visually 

based studies with human subjects for headlight evaluation as 

a field test in reality. The illuminance, setup, and basic 

illumination, e.g., high beam matrix headlights of the ego 

vehicle, are modeled after real headlights manufactured by 

HELLA GmbH & Co. KGaA. Due to a Non-Disclosure 

Agreement (NDA) the setup cannot be explained in detail. In 

addition to the basic illumination directly in front of the 

vehicle, the matrix headlight in this paper has a modeled light 

module using the flexible modeling approach in [14]. The 

headlight module has a horizontal beam angle of ±20°, a 

vertical beam angle of ±5°, the aspect ratio is 4:1, similar to 

[15], and has 256 pixel rows and 1024 columns for a total 

amount of 262,144 pixels. The illumination area of all pixels 

overlaps with the area of their neighbors. The intensity of the 

headlights of the oncoming vehicles is empirically lowered to 

create a realistic appearance and reflections in the camera 

images. 

For object detection, the "YOLOv5x6" model was chosen 

from the YOLOv5 network pre-trained on the COCO dataset 

[9], which contains mainly day images and has 80 object 

categories. The network is therefore not trained and 

optimized for traffic object detection at night with matrix 

headlamp illumination, so the results in this paper will not be 

the best possible, but this contribution is a kind of preliminary 

study as a starting point to identify promising approaches to 

be used in further work to select and train the right network. 

The authors expect the best and most efficient results from a 

combination of novel lighting functions for illumination and 

a specialized and trained network for detection. 

The matrix headlight is simulated in real time [16] using 

Compressed Sparse Row (CSR) sparse matrix vector 

multiplication with CUDA [17,18] on a graphic card (GPU) 

and controlled using the Super Sampling Control (SSC) 

approach [6,19]. SSC computes the optimal utilization of all 

pixels starting from 3D target objects called primitives, e.g. 

cuboids or surfaces, so that the illumination of the headlamp 

best matches the desired illumination in shape and brightness. 

For example, GFHB is realized by a target cuboid primitive 

around the upper part of the oncoming vehicle that must not 

(a) High beam at 100 % usage,   

      which would dazzle other traffic   

      participants. 

(b) High beam at 8 % usage and  

      deactivated illuminations at both  

      sides. 
Fig. 3: Comparison of the default high beam and novel optimized beam 
pattern in a simulated scene. The class, confidence and bounding boxes of 
the YOLOv5 [9] object detection are also shown. 
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be illuminated by the matrix headlamp, which means that the 

target intensity in this 3D region is set to zero. Fig. 4 shows a 

more complex scene where lines are projected as structured 

light [20] as a kind of 3D scanning for potentially improved 

landmark detection from a pair of matrix headlights. Here, the 

primitives are planes consisting of the target lines as an 

image. The position and rotation of the lines is determined by 

the placement of the primitives in the world in front of the 

ego vehicle.  

For an objectified and quantitative evaluation and rating of 

the quality of support of the object detection, this contribution 

proposes two evaluation criteria. One is the correctness and 

confidence of the classification and the other the Generalized 

Intersection over Union (GIoU) [11] of the detected 

rectangular bounding box to the true or reference bounding 

box. The confidence is the probability that the object belongs 

to the detected class and the GIoU is according to [11] the 

“similarity between two arbitrary shapes (volumes) 𝐴, 𝐵 ⊆
𝕊 ∈  ℝ𝑛”. With the smallest enclosing convex object 𝐶 ⊆
𝕊 ∈  ℝ𝑛 of 𝐴 and 𝐵 the GIoU is  

 

|𝐴 ∩  𝐵|

|𝐴 ∪  𝐵|
−

|𝐶 \(𝐴 ∪  𝐵)|

|𝐶|
 . (1) 

 

The first part of this formula is the IoU and the second part 

ensures that the formula becomes < 0 when 𝐴 and 𝐵 do not 

intersect [11]. If 𝐴 and 𝐵, which are the bounding boxes in 

this contribution, match perfectly, the GIoU is = 1. The 

confidence of the network is divided by the confidence of the 

reference for evaluation, so a value of > 1 means that the 

confidence is higher than the reference. Since both criteria 

describe different aspects of an object detection, both are 

measured and evaluated separately and not combined into a 

single metric since the individual weighting of the criteria 

would be subjective. 

The reference is the quality of object detection, when the 

matrix headlamp produces a high beam illumination. The 

utilization of the pixels of the matrix headlight is calculated 

by minimizing the Root Mean Squared Error (RMSE) 

between the matrix intensity distribution and a high beam 

pattern currently used in the premium segment. Fig. 3a shows 

these reference illuminations as well as the bounding boxes 

and object detection reliability with the YOLOv5 network of 

a vehicle at 𝒑100,3.5 and a pedestrian at 𝒑50,−2.5. 

The first experiment investigates whether a selective 

uniform increase of illumination for the whole area of 

potentially relevant objects improves their detection when the 

environment is minimally illuminated. The minimum 

illumination level is shown in fig. 3b. Another aspect is to 

evaluate whether and to what extent other illumination 

features such as GFHB interfere with and affect object 

detection. For vehicles, GFHB is activated to prevent 

illumination of the upper part of the vehicle and for people to 

prevent illuminating their heads. GFHB and marker lights are 

active, so that the person’s head is not illuminated and the 

position is highlighted with a projected line of matrix 

headlights from the ego vehicle to the pedestrian, which is 

intended to warn the human driver and direct his attention to 

potential dangerous spots. Fig. 5 shows a scenario with 

activated lighting functions. 

The first test scenario consists of detecting an oncoming 

red vehicle at the location 𝒑100,3.5, which covers the smallest 

number of pixels in the camera image compared to closer test 

positions and is therefore more difficult to detect. In the area 

of the vehicle, i.e. within its minimum enclosing bounding 

box, the target light intensity is uniformly set with SSC and 

the effects of confidence and GIoU are measured. The pixel 

utilization is increased from 0% to 100%. The results are 

shown in fig. 6 and compared with the baseline obtained by 

the unchanged minimum illumination (dotted lines). The 

reference is always high beam illumination. All experiments 

are repeatable, but for relative confidence and GIoU 

deviations of ≈ ±0.01 occur. One possible reason would be 

stochastic lighting calculations in the ray tracing and 

antialiasing techniques of the Unreal Engine, but these 

variations require more investigation. In addition, the results 

depend on the color and material properties of the objects and 

especially on the design of the background, e.g. the presence 

 
Fig. 4: Example of projecting symbols consisting of lines with matrix 

headlights controlled by SSC. The yellow primitives are considered by 

both headlights and the blue only by the left and the red only by the right 

one. 

 
Fig. 5: Visualization of a selectively illuminated red vehicle at position 

𝒑100,3.5 with GFHB and blue person at location  𝒑50,−2.5 with GFHB and 

marker light. The class, confidence and bounding boxes of the YOLOv5 

[9] object detection are also shown. 

 
 

Fig. 6: Influence of changing utilization (1 = 100%) of the pixels, which 

illuminate a vehicle at 𝒑100,3.5, on the confidence and the GIoU under 

consideration of the GFHB lighting function. No line means no detection. 
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of trees. The exact influence of these parameters was not 

investigated, but the main general statements and conclusions 

of this contribution were empirically tested and confirmed 

with variable parameters. 

If the vehicle is not illuminated at position 𝒑100,3.5, it will 

not be detected by the network. Low illumination increases 

confidence and GIoU, but high illumination decreases 

confidence and does not improve the GIoU (as shown in fig. 

6 with the red dashed and blue solid lines). This is potentially 

caused by the appearance of the vehicle as a "flat" white 

object when the illumination is too high. In general, 

selectively increasing uniform illumination can improve 

object detection, but there is a threshold above which 

increasing the intensity no longer improves detection. Similar 

to the legibility of traffic signs, results can degrade if the 

illumination intensity is too high. When projecting a plane in 

the lateral direction at the position of the human driver of the 

oncoming vehicle with uniform illumination in the height and 

width of the vehicle as opposed to using a target cuboid as a 

primitive, the sides of the vehicle are not illuminated as much 

as when using a cuboid as a primitive. This results in a 

smoother drop in confidence as illumination increases, but the 

curve of GIoU remains unchanged (as shown in fig. 6 with 

the yellow and purple lines). Since the target area is smaller, 

the projected plane approach requires less energy than the 

cuboid and yields better results. 

An important question for road safety is whether lighting 

functions could influence and interfere with object detection. 

To answer this question, GFHB is activated so that the upper 

part of the vehicle is not illuminated, and the experiment is 

repeated. The results in fig. 6 show that selectively 

illuminating the lower part of the vehicle improves detection 

confidence, but not GIoU, and using a box or plane as a target 

has no effect. The GIoU with GFHB is always lower, because 

the upper part of the vehicle is not visible in the captured 

image. 

The next test scenario consists of improving the detection 

of the half-illuminated person at position 𝒑50,−2.5 by selectively 

illuminating the entire body. Using a projected box or plane 

as the uniform target primitive makes no difference in this 

case, so a comparison is not shown in fig. 7. Once the body is 

fully illuminated, the confidence increases and is higher at 

low illumination than at high beam and decreases as 

illumination increases, but the GIoU remains constant and is 

worse than at high beam (as shown in fig. 7 with the blue and 

red lines). The bounding box is higher than the reference, 

possibly caused by the illuminated tree in the background. As 

illuminance increases, the person appears uniformly white 

and at high illuminance the person is no longer detected as a 

false negative (as shown in fig. 7 with the disappearing lines). 

Too much illumination is thus critical to safety here, as it not 

only dazzles the pedestrian, but also interferes with or 

prevents object detection by the ego vehicle. 

To avoid pedestrian dazzle, GFHB can be activated so that 

the person’s head is not illuminated (as shown in fig. 5). 

Activating GFHB for pedestrians degrades the results and 

leads to an earlier false-negative result (as shown in fig. 7 

with the yellow and purple lines). To warn the human driver 

during semi-automated or cooperative driving and draw the 

drivers’ attention, a line from the vehicle to the person could 

be projected with the headlamps. If the line is bright and 

clearly visible from beginning to end, the illuminated person 

was not detected by the YOLOv5 network. A possible 

explanation is that the white line and the white person were 

combined by the network to form a new unknown object that 

was not present in the training dataset and thus could not be 

detected. With a line fading with increasing distance to the 

ego vehicle, as in fig. 5, the person is recognizable to 

YOLOv5 and the results are slightly worse than without a 

projected line. Thus, for line projection, it is recommended to 

use lines that end well before the object to avoid unintended 

links. Additionally, when using a minimal base illumination, 

projected symbols are better visible, because the positive 

contrast of the bright symbol to the dark road is higher. This 

can lead to unintended links for machine vision and to false 

interpretations, when the symbols such as lines are considered 

part of the road marking. An example therefore is fig. 6, 

where the projected line has a similar color and brightness as 

the road markings. The combination of marker line and 

GFHB yields the worst results in these test cases (as shown 

in fig. 7), but as long as the person is recognized, they are 

better than the baseline. 

The novel minimum basic illumination with one 

illuminated object consumes only about 0.08 − 0.25 · 0.08 + 

0.1 · 1 = 16% of the energy of a normal high beam. The first 

term 0.08 is the general energy reduction 𝑒r to 8% of the 

default high beam brightness for the used test scenario (as 

shown in fig. 3b). For this calculation, it is assumed for 

simplification, that the consumed energy is proportional to 

the luminous flux of the headlamp. The second term is the 

multiplication of the approximated relative area 𝑎z in the 

headlamp beam pattern at full deactivation, which is in this 

case 25% = 0.25, with 𝑒r to take the total deactivation of the 

illumination into account. The third term is the multiplication 

of the approximated relative area 𝑎o,𝑖, which the 𝑖-the object 

covers, is assumed to be 10% on average of the headlamp 

beam pattern, with energy consumed by the illumination in 

the area of the object. The chosen utilization and energy 

consumption 𝑒o,𝑖 in the area of the 𝑖-th object is assumed to 

be equal to high beam, so 𝑒o,𝑖  is 100% = 1. This is a worse 

case calculation, because good utilization in subjective 

opinion would be below high beam in all test cases. The high 

beam utilization in the area of the object is shown in all 

figures as a small gray vertical line. In general, the energy 

saving potential in a scene could be calculated with  

𝑒r (1 − 𝑎z ) + ∑ 𝑎o,𝑖 𝑒o,𝑖

𝑖=𝑁−1

𝑖=0

 , (2) 

where 𝑁 is the total number of illuminated traffic objects.  

 
Fig. 7: Influence of changing utilization (1 = 100%) of the pixels, which 

illuminate a person at 𝒑50,−2.5, on the confidence and the GIoU under 

consideration of the GFHB lighting function. No line means no detection. 
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This is only a rough calculation to illustrate the potential of 

this concept, and the values will be further explored in an 

extended study with multiple traffic scenarios in future work. 

In summary, selective illumination of traffic objects can 

improve the confidence of object detection to values higher 

than using high beam and a GIoU of about 0.85 can be 

achieved, but high illumination levels can degrade the results 

and lead to false negatives. In addition, lighting functions that 

were not taken into account during the training of the network 

can lower the quality of the detection and can produce false 

negatives as a worse case, where the object is no longer seen. 

IV. SYMBOL PROJECTION FOR OBJECT DETECTION 

Modern HD matrix headlights can project arbitrary images, 

so-called symbols, onto the road surface and objects. This is 

used for human-machine-communication between the 

automated vehicle and persons, which can be the driver or 

pedestrians. For the driver, the symbols are some kind of an 

in world head-up-display and for pedestrians they act like a 

messenger system. Knowing the ideal symbol’s appearance 

and comparing it with its look in the camera image, the 

object’s shape can be reconstructed in a kind of a 3D scan. 

This approach is called structured light and a commonly used 

pattern is parallel stripes, from whose deformation the surface 

can be reconstructed. To investigate the effect of structured 

light symbols on object detection algorithms that are not 

designed to process structured light, in the next experiment 

various symbols are projected onto the vehicle at position 

𝒑100,3.5. The symbols evaluated are vertical and horizontal 

lines, lines rotated by 45° and crossing lines, which are shown 

in fig. 8. Here the patterns are projected on a red vehicle and 

change the subjective appearance of the vehicle in 

combination with the dark background. 

The object detection results, when the symbols are 

projected on the whole vehicle, are shown in fig. 9. The 

results depend on the relative size of the symbol to the object, 

but in general the quality of detection of non-optimized 

algorithms with structured light is worse than without. Here, 

the uniform plane illumination is the baseline (dotted lines). 

The vehicle can be detected at zero utilization with the 45° 

rotated lines (as shown in fig. 9 with the green and light blue 

lines) because the primitive is rotated by SSC by 45°, so that 

the lower side parts are minimally illuminated (as shown in 

fig. 8c), which seems to be sufficient for detection. The use 

of structured light leads to false-negative results (as shown in 

fig. 9, where the lines end), which means that the objects are 

not detected by the automated vehicle. This was also 

investigated with a pedestrian at position 𝒑50,−2.5, which led to 

similarly poor and safety-critical results, because the 

pedestrian was also not detected in the majority of test cases. 

A possible explanation is that the contrast of the lines and the 

area in between, in which the headlamp pixels are totally 

deactivated, is too high. The area between the stripes is too 

dark and blends with the dark background, which disturbs the 

outer shape of the objects and can be seen in fig. 8, so that the 

YOLOv5 cannot reconstruct the outer shape of the object, 

which leads to a false negative detection, because the vehicle 

is not recognized as a vehicle.  

Another approach is to not use uniform symbols as in 

section III, but to use randomized images 𝐼 ∈  ℝ≥0 ∧ ≤1
𝑛 × 𝑛 with 𝑛 

rows and 𝑛 columns as patterns. The pixels of 𝐼 are randomly 

set between 0 and 1 as real numbers. Projected patterns 𝐼 with 

pixel values from a uniform distribution with a mean 𝜇 = 0.5 

and from a normal distribution with a mean 𝜇 = 0.5 and a 

standard deviation 𝜎 = 0.13 are evaluated. The values of the 

symbol 𝐼 are multiplied by SSC with the target pixel 

utilization to calculate the actual pixel utilization, so that 

these randomized symbols are on average half as bright as the 

uniform ones in section III, because they have a mean of  𝜇 = 

0.5. Fig. 10 shows the results for detecting a vehicle at 𝒑100,3.5 

and fig. 11 shows the results for detecting a person at 𝒑50,−2.5.  

 
Fig. 9: Influence of changing utilization (1 = 100%) of the pixels, which 

illuminate a red vehicle at 𝒑100,3.5, on the confidence and the GIoU with 

different structured light, that consists of projected line symbols. No line 

means no detection. 

(a) Vertical lines. (b) Horizontal lines. 

car 67.67% 

(c) 45° rotated lines. (d) Crossing lines. 

Fig. 8: Projection of different structured symbols on a red vehicle at 

𝒑100,3.5. The class, confidence and bounding boxes of the YOLOv5 [9] 

object detection are also shown.  
Fig. 10: Influence of changing utilization (1 = 100%) of the pixels, which 

illuminate a vehicle at 𝒑100,3.5, on the confidence and the GIoU with 

different projected random noise symbols. No line means no detection. 
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Fig. 11: Influence of changing utilization (1 = 100%) of the pixels, which 

illuminate a person at 𝒑50,−2.5, on the confidence and the GIoU with 

different projected random noise symbols. No line means no detection. 
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Using a uniform or normal distribution produces the same 

results with confidence lower or similar to projecting a 

uniform plane with 𝜇 = 1 and 𝜎 = 0.0. One possible 

explanation is that the inhomogeneous illumination disturbs 

the YOLOv5 network rather can making the shape more 

visible. The GIoU is similar, but the loss of the person 

detection starts at a lower pixel utilization. Since 𝜇 of the 

random images is half of the uniform images, the projection 

of these images consumes on average half the energy as the 

uniform images. Therefore, for a comparison at the same 

energy consumption, the results of the random images should 

be compared with those of the uniform image at half the pixel 

utilization. The comparison of fig. 10 and fig. 11 leads to a 

worse confidence, but a similar or better GIoU for the random 

images. In summary, this means that if the main task is to 

determine the class of objects, it is energetically more optimal 

to use a uniform target distribution, but if the task is to obtain 

an accurate bounding box, a random distribution could 

improve the results as long as the loss of confidence is 

acceptable. Structured light, however, should generally be 

avoided in the context of non-optimized networks, as false 

negatives can occur. 

V. CONCLUSION & OUTLOOK 

The contribution at hand presents a novel approach to 

dynamic, energy-optimized illumination by matrix headlights 

for automated driving that achieves a similar quality of 

automatic object detection as high beams and requires only 

about ≈16% of the energy in the evaluated test scenario. The 

proposed uniform illumination strategy has been compared 

with alternatives such as structured light and has the best 

overall quality and does not produce false negative object 

detection results. So the novel approach of using a minimal 

base illumination in combination with a dynamic adjustment 

strategy, which will be developed in a further contribution, 

seems to be promising for energy-efficient and sustainable 

electrical vehicles. However, other illumination functions 

interfere with object detection and projected symbols should 

be separated from the target object to avoid false negative 

results, which was investigated using marker lights and 

pedestrians as examples. 

This contribution is only the first step in the development 

of dynamic and in the loop-controlled illumination for optical 

sensors and machine vision and has shown the feasibility and 

energy saving potential. All evaluations were performed in 

simulation, so the next step would be to use existing real 

matrix headlights such as [15] to replicate the experiments in 

reality and validate and optimize the results. Moreover, the 

evaluation was performed with a single scenario, so another 

next step will be to define a realistic set of typical scenarios, 

such as cities, country roads or highways, and evaluate the 

energy saving potential in these scenarios and additionally the 

collaboration with other objects, such as street lamps.  
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